Transition element:				
An element in the an	•	that forms an		with
The transition elements ha	ave the following		properties:	
Are .				
Good				
Have	melting and boiling p	points.		
The transition elements ha	ave the following	I	properties:	
Form compounds in more	than			
Form	compounds.			
Act as of the element.	either the		or a	
Form a variety of				

Electronic structure

Electronic configuration	Oxidation states of its ions	
[<u>Ar</u>] 3d² 4s²	+3	
[Ar] 3d² 4s²	+1, +2, +3, +4	
[Ar] 3d ³ 4s ²	+1, +2, +3, +4, +5	
[Ar] 3d ³ 4s ¹	+1, +2, +3, +4, +5, +6	
[Ar] 3d ⁵ 4s ²	+1, +2, +3, +4, +5, +6, +7	
[Ar] 3de 4s2	+1, +2, +3, +4, +5, +6	
[Ar] 3d ⁷ 4s ²	+1, +2, +3, +4, +5	
[Ar] 3d8 4s2	+1, +2, +3, +4	
[Ar] 3d9 4s1	+1, +2, +3	
[Ar] 3d ¹⁰ 4s ²	+2	
	[Ar] 3d ¹ 4s ² [Ar] 3d ² 4s ² [Ar] 3d ³ 4s ² [Ar] 3d ³ 4s ² [Ar] 3d ³ 4s ² [Ar] 3d ⁶ 4s ² [Ar] 3d ⁷ 4s ² [Ar] 3d ⁸ 4s ² [Ar] 3d ⁸ 4s ²	[Ar] 3d² 4s² +1, +2, +3, +4 [Ar] 3d³ 4s² +1, +2, +3, +4, +5 [Ar] 3d³ 4s² +1, +2, +3, +4, +5, +6 [Ar] 3d³ 4s² +1, +2, +3, +4, +5, +6 [Ar] 3d³ 4s² +1, +2, +3, +4, +5, +6 [Ar] 3d³ 4s² +1, +2, +3, +4, +5, +6 [Ar] 3d³ 4s² +1, +2, +3, +4, +5 [Ar] 3d³ 4s² +1, +2, +3, +4, +5 [Ar] 3d³ 4s² +1, +2, +3, +4 [Ar] 3d³ 4s² +1, +2, +3, +4

Why can most transition elements form variable oxidation states?

They easily lose their electrons to form . They have similar size and consequent in a variety of oxidation states.

Why are Zn and Sc not considered transition elements?

Transition elements as a catalyst

As . They can use their to other species onto the metal's surface. This the bond of the adsorbed species. This the activation energy hence the rate of a reaction. The products from the surface of the metal.

F	our	examp	oles	are:
•	OUI	CAGIIII	<i>-</i> 103	ai c.

in the Haber process.

in catalytic converters of

car exhausts.

in the hydrogenation of alkenes.

in the decomposition of hydrogen peroxide.

Transition metals can also act as . The catalyst ion usually oxidation state during the reaction and is converted back to it's original at the end of a reaction.

An example is the use of in the contact process.

Coloured compounds:

Transition metal ions themselves are ! But they do form coloured . An example is when a transition metal ion is attached to molecules e.g. with vanadium

Colour changes aris	e because of		,
of the		. The reason wh	y they are coloured is
complicated and no	t required for OC	R, however it is to do	with an
being	(given more energial)	gy) and promoted to	a higher energy
. The energy that is	not	by the	, is seen as
light.			

Transition metals and complex ions:

Complex ion: An ion in which a number of
are bound to aorby.

Or a surrounded by

Ligand: A or that has at least of that bonds to a through a .

Co-ordinate bond: A formed between the and the central metal ion. When both come from the same atom.

Co-ordination number: The number of attached to the central metal ion.

Shapes of complexes:

Co- ordination number	Name of shape	Bond angle	Example

	ligands such as	a	nd
often form		•	
	ligands such as		often form
and		•	

Monodentante: Form only metal ion e.g.	co-ordinate bond with the central
Bidentante: Form e.g.	co-ordinate bond with the central metal ion
Multidentate/polydentate: Form co-ordinate bonds with the central meta	or I ion e.g.
Stereoisomerism in transition metal io	n complexes:
Transition metal ion complexes can exhiland	oit
Cis/trans (E/Z)	
In str	ructures:

If the bond angle of is then

the or isomer forms.

If the bond angle of is then

the or isomer forms.

Cis-platin:

Cis-platin is a drug. Only the version of the structure will work as the ions are displaced and the molecule

bonds with . This stops the replication of cancerous cells.

п	_				1						
-	ra	nsi	111	nr	1 0	Δι	m	Δ	n	tc	٠
	1 1 (1	11.71								1	,

In structures:

If the bond angle of then the or isomer forms.

If the bond angle of then the or isomer forms.

Optical isomerism:

complexes can form optical isomers. They can only occur with ligands e.g.

Ligand Substitution

Ligands that are attached to a transition metal ion can often be for another ligand, this is known as . This usually occurs because the substituting ligand has a to the metal than the original ligand.

Reaction with ammonia:

and ligands are in size therefore

the number does not

Reaction with chloride ions:

Using a high such as in conc. or saturated

Because ligands are larger, there is usually a change in

number from to

Colours of hexaaquaion transition metal ion solutions

Aqueous transition metal ion solution	Colour
[Cr(H ₂ O) ₆] ³⁺	
[Ni(H ₂ O) ₆] ²⁺	
[Fe(H ₂ O) ₆] ²⁺	
[Fe(H ₂ O) ₆] ³⁺	
[Co(H ₂ O) ₆] ²⁺	
[Cu(H ₂ O) ₆] ²⁺	

Haemoglobin and oxygen transportation:

Haemoglobin (a complex containing) transports

around the blood. This is done by the oxygen to the

haemoglobin through a bond. The oxygen replaces a ligand. can form a

ordinate bond than the bond. This means the

will bond rather than oxygen. Meaning cannot be transported

through the blood.

Precipitation reactions:

occur when ions are

added to . The hydroxide ions can be

added by either adding or to the solution.

Why can we use $NH_{3(aq)}$?

The reactions that occur are as follows:

co-

Table for ions that can be tested:

lon	Reaction	Colour of precipitate

Adding aqueous ammonia to aqueous copper ions:

Two observations will be seen

- 1. The ppt will be observed.
- 2. When ammonia is added to this solution. The will dissolve and form a solution

A similar reaction with occurs:

	Transition elements	
13 Page	www.myequityeducation.com	©