STRUCTURE AND BONDING

Structures:	
There are four distinct type	es of structure:
1.	
2.	
3.	
4.	
They each have different from its	. A structure can generally be properties.
Giant metallic structure	
Metallic bonding definition	n:
	force of attraction between
surrounded by a	•
Examples of giant metalli	c structures:

Properties of met	als:					
High melting point positive metal ions to over	•				of attraction b	oetween amounts of
Conduct electricit metallic structure.	y (solid or n	nolten):		C	can	through the
Insoluble:	or	interact	ion with	٧	vater molecules	5.
But they do react!						
Hard/High tensile metal ions and sec	_	sed electron		orce of c	attraction betw	een positive
Q) Why does Ma	gnesium hav	ve a higher	melting point	than soc	dium?	
Magnesium has a . Therefore, it has metal cation. Ther metal ions and sec overcome these	e is a a of delocali		s. Therefore, it	orce of o	attraction betw	tion per een positive ergy to
Charge density: 1	The o	n an	given its			
e.g.	Mg ²⁺			Na ⁺		

Giant covalent	structures		
Covalent bond	definition: The of electrons a		estatic force of attraction between a f bonded atoms.
Properties: High melting po	oint: to break		een each atom that require
Do not conduct to	electricity (solid the charge.	or molten): No	or
Insoluble:	or	interaction with	water molecules.
Hard:		between each aton	n

Differences between diamond and graphite **Diamond Graphite Diamond structure:** between each atom. Properties and uses of diamond relating to its structure: Hard: Shiny: **Graphite structure:** layers with forces between between each atom, each carbon them. electricity. atom has , allowing it to Properties and uses of graphite relating to its structure: **Conducts electricity:** Slippery:

Giant ionic lattice

Ionic bonding definition:	electrostatic force of attraction b	etween
---------------------------	-------------------------------------	--------

Properties:

High melting point: electrostatic force of attraction between

, that requires a amount of to break.

Soluble (usually): The can interact with the water

molecules.

Form crystal like structures: and arrangement of

Do not conduct ele	act electricity when solid: The		are	in position, there are	
	to	the charge.			
De conduct de suit					
Do conduct electric move, there are	city when moit	en or aissoivea in v that can	water: the the charge	are e.	to
•			3		

Simple molecular structure:			
Simple molecular structure: A bonded together.		that are	
Properties:			
Low melting points:		between molecules.	
Do not conduct electricity (molt		or	
to	the charge.		
Write out the equation includ	ing state symbols for wh gas.	nen lodine goes from a solid to o	ı
	-		
Intermolecular forces:			
Intermolecular forces: The	of attraction	molecules.	
Intermolecular forces play a bi	g role in determining the	melting point of simple molecul	lar
	structures		

Example	Structure	Bonding	Melting/boiling point	Solubility	Electrical conductivity when solid	Electrical conductivity when molten
Fe						
SiO ₂						
MgCl ₂						
CO ₂						

Q 2) Aluminium has a melting point of $660\,\mathrm{C}$ and Magnesium has a melting point of $650\,\mathrm{C}$. Explain why they have similar melting points, but why aluminium's is higher.

3) For the following descriptions state the structure and the bonding within the structure for each description. And explain your answers.
a) Compound A has a high melting. When dissolved in water it conducts electricity. When it is a solid it does not conduct electricity.
Structure:
Bonding:
Reasoning:
b) Compound B is a black solid that does not melt at a 1000 degrees Celsius. It will not dissolve in water but will conduct electricity as a solid. It is slippery to the touch.
Structure:
Bonding:
Reasoning:

c) Compound C is a gas at a room temperature. It has a melting point of -98.0 degrees Celsius. As a solid it does not conduct electricity.
Structure:
Bonding:
Reasoning: